MEASURING THE ENERGY CONSUMPTION OF HPC SYSTEMS

Anne-Cécile Orgerie

ORAP Forum 9th December 2021

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Paris Agreement: 1.5° C

Objective in 2019: reducing global greenhouse gas emissions by 8% each year

ICT energy consumption

ICT energy consumption grows by ~9% each year.

Anne-Cécile Orgerie [HDR 2020] 5

My scientific context

- Energy consumption
- Large-scale distributed sytems
- Computing and networking parts
- Use phase

Started with Grid computing some years ago...

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Energy efficiency: business as usual?

Computing slower?

Energy efficiency: business as usual?

Computing faster?

Computing slower?

Temperature matters.

How to measure energy efficiency in DCs?

PUE: Power usage effectiveness

$$PUE = \frac{Total\ Facility\ Power}{IT\ Equipment\ Power}$$

the green grid

"Green Grid Data Center Power Efficiency Metrics: PUE and DCIE", Green Grid White Paper, 2008.

Idle server consumes nothing or little.

Nova node: 2 x Intel Xeon E5-2620 v4, 8 cores/CPU, 64 GiB RAM, 598 GB HDD (2016)

This server model consumes that amount of power.

10% difference in idle and more at maximal consumption.

No chance for naive modeling

Naive model:

$$5 \times P_{idle} + 8 \times P_{process} = X \text{ Watts}$$

$$5 \times P_{idle} + 8 \times P_{process} = X \text{ Watts}$$

Best configuration for power consumption? It depends.

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Energy consumption: a complex phenomenon

Need for wattmeters and sound experimental campaigns

- To understand
- To build robust models
- To get solid instantiations
- To obtain realistic algorithms

Performing measurements

Intel's RAPL (Running Average Power Limit) interface

Warning: RAPL counters ignore a **large part** of the power consumption of servers.

Anne-Cécile Orgerie

RAPL counters capture most of the power consumption of a server.

Power consumption of Taurus-12

Reproducibility?

Idle consumption

[Cluster 2017]

Idle power consumption varies over time.

Methodology for measuring server consumption

Anne-Cécile Orgerie

The relation between power and CPU load is linear/quadratic/cubic.

17% difference in consumption for applications fully loading the server.

For a given application, there is a least consuming configuration.

Faster with Turboboost, and comsuming less energy.

Anne-Cécile Orgerie

[CCPE 2021]

Low power processors consume less energy.

BW_I: Xeon E5-2630L v4 (Broadwell) -> low power processor (orange)

BW: Xeon E5-2630 v4 (Broadwell) (green)

[ISCC 2021]

Process placement onto cores

Up to 8% difference in average power consumption between unpaired and pairwise.

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Simulating energy consumption

Simulating energy consumption

Server profiling

Taurus, NAS-EP

To do for each computing kernel.

At each frequency.

And each time we want to compare the model to real life.

Simulating server clusters

Reproducible results: https://gitlab.inria.fr/fheinric/paper-simgrid-energy

Wasted energy at all levels of data centers

29

Models and simulation tools for what?

Capacity and energy planing

What-if scenarios

Algorithm analysis

Estimating VM energy consumption

Estimating end-to-end energy consumption

Closing doors

Outline

- Context
- Understanding the energy consumption of HPC systems
- Measuring accurately the energy consumption of HPC systems
- Modeling energy consumption of HPC systems
- Concluding broader remarks

Increasing energy efficiency ≠ reducing consumption

Anne-Cécile Orgerie 32

Increasing energy efficiency ≠ reducing consumption

Beware of rebound effects!

Full life cycle of servers

Dell PowerEdge R430 (Nova cluster)

Estimated carbon footprint (by Dell): 8,150 kgCO2e

Assumptions for calculating product carbon footprint:

Product Weight	26.3 kg	Server Type	Rack	Assembly Location	EU
Product Lifetine	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1760.3 kWh
HDD/SSD Quantity	x2 1TB 3.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

Life cycle of end devices

iPad Pro (12.9-inch)

STAR limit

Uses more energy

kWh

iPad Pro (12.9-inch) life cycle carbon emissions

Anne-Cécile Orgerie

Uses less energy

kWh

Source: Product environmental report, Apple, 2018.

Numerous other environmental impacts

Standard	ISO 14040:2006 and 14044:2006		
Database	Ecoinvent 2.2		
Method for impact assessment	Life cycle impact assessment classification and characterization factors according to CML 2001 as provided in the SimaPro 7.1.5 LCA tool		
LCA software	SimaPro 7.1.5		

Thank you for your attention

http://people.irisa.fr/Anne-Cecile.Orgerie

Citations

- [Cluster 2017] "Predicting the Energy-Consumption of MPI Applications at Scale Using Only a Single Node", F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-Amarie, S. Hunold, A.-C. Orgerie and M. Quinson, *IEEE Cluster Conference*, pages 92-102, September 2017.
- [ISCC 2021] "Experimental Workflow for Energy and Temperature Profiling on HPC Systems", K. Rao Vaddina, L. Lefèvre and A.-C. Orgerie, *IEEE Symposium on Computers and Communications*, pages 1-9, September 2021.
- [CCPE 2021] "Thermal design power and vectorized instructions behavior", A. Guermouche and A.-C. Orgerie, Concurrency and Computation: Practice and Experience (CCPE), pages 1-18, March 2021.
- [ICCS 2019] "Accurately Simulating Energy Consumption of I/O-intensive Scientific Workflows", R. Ferreira da Silva, A.-C. Orgerie, H. Casanova, R. Tanaka, E. Deelman and F. Suter, *International Conference on Computational Science*, pages 138-152, June 2019.
- [JOCS 2020] "Characterizing, Modeling, and Accurately Simulating Power and Energy Consumption of I/O-intensive Scientific Workflows", R. Ferreira da Silva, H. Casanova, A.-C. Orgerie, R. Tanaka, E. Deelman and F. Suter, *Journal of Computational Science*, volume 44, pages 1-14, July 2020.
- [FGCS 2018] "End-to-end Energy Models for Edge Cloud-based IoT Platforms: Application to Data Stream Analysis in IoT", Y. Li, A.-C. Orgerie, I. Rodero, B. Lemma Amersho, M. Parashar and J.-M. Menaud, Future Generation Computer Systems, Elsevier, volume 87, pages 667-678, October 2018.
- [SUSCOM 2018a] "An experiment-driven energy consumption model for virtual machine management systems", M. Callau-Zori, L. Samoila, A.-C. Orgerie and G. Pierre, Sustainable Computing: Informatics and Systems, Elsevier, volume 18, pages 163-174, June 2018.
- [SUSCOM 2018b] "Energy-proportional Profiling and Accounting in Heterogeneous Virtualized Environments", M. Kurpicz, A.-C. Orgerie, A. Sobe and P. Felber, Sustainable Computing: Informatics and Systems, Elsevier, volume 18, pages 175-185, June 2018.

http://people.irisa.fr/Anne-Cecile.Orgerie/publis.html

Saving energy

Designing energy efficient algorithms

5 DCs with 20 homogeneous servers each, no migration

Optimal solution (dynamic programming algorithm) => 2 weeks of computation on 30 Grid'5000 servers

SAGITTA is close to the optimal solution.

[Chapter2018]

VM migration algorithm

1. **Pre-allocation**: incoming VM requests

Best-fit

[...]

Expected value

- 2. Migration: moving running VMs between DCs with network constraints
 - a. Evaluate energy costs (VM migrations) and gains (expected remaining

green energy on DCs)

Expected value

Best-fit

b.Schedule the VM migrations between DCs

Dichotomy

- 3. Consolidation: packing VMs inside DCs
- 4. Allocation: actually send the commands to the servers
 - a.Switch ON/OFF servers
 - b.Deploy and migrate the VMs

Energy-efficient algorithm dissection

9 DCs and 1,035 servers in total

Theoretical lower bound => best-fit on a single DC

State-of-the-art: MBFD, OOD-MARE

[SBAC-PAD2018]