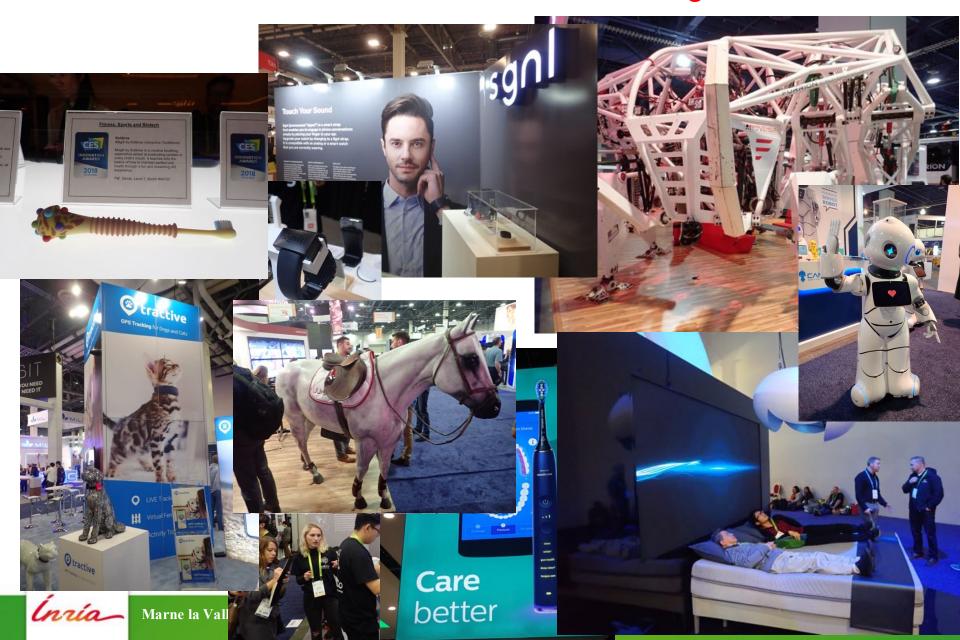


Eco-design or data centres collapse:

- environmental impact of digital
- 3 scenarii
- GreenIT challenges and role

Laurent Lefèvre laurent.lefevre@inria.fr


INRIA AVALON / LIP Ecole Normale Supérieure de Lyon

Marne la Vallée, June 6, 2019

Is digital crazy (out of control)?

CES2018: building human++ of tomorrow: ultra-connected, ultra-observed, ultra-mobile -> ultra digital

Is digital crazy (out of control)?

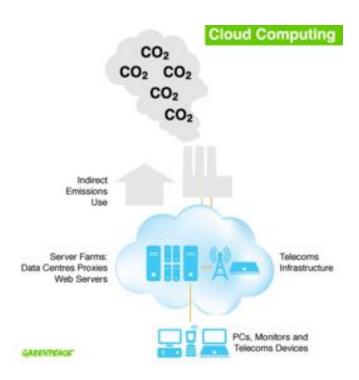
The data/usage problem : the Pope effect!

The problem: the Pope effect!

The problem: the Pope effect!

Such much data to process, store and transport All these data are taken by datacenters and networks

In one hour....


In France: 1,8 Mt of electronic waste in 2017: 3.4 tonnes per minute

loT: 15 B?

2030:50-150 B?

In 2010... the Cloud/Datacenter was no more virtual...

Greenpeace report: Make IT Green: Cloud Computing and its contribution to Climate Change (2010)

But the Cloud should be Green! ... the myth

- Virtualization of computers
- Virtualization of networks
- Virtualization of services
- Cloud is based on improved physical infrastructures and thus benefit from their EE
- Can benefit from renewable energy
- Aggregation / Consolidation effect

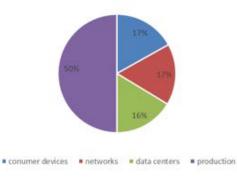
The reality: the Cloud faces a lot of issues

Uptime Institute, 2015

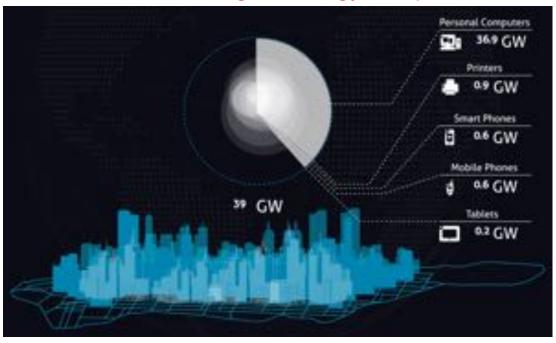
30% of US servers are

« comatose »

« those that have not
delivered information
or computing services in six
months or more »


- Overprovisioning of computing, storing and networking resources
- Optimizations technics are rarely applied in real clouds
- Providers afraid on resilience/users/QoS impact

Electricity Usage of Digital world


>10% of worlwide electricity Increase by 8% per year 4% of GHG

Source : leanICT, shift projet

Focusing on energy and power

Impact of ICT LifeCycle: the real full impact...

Multiple impacts

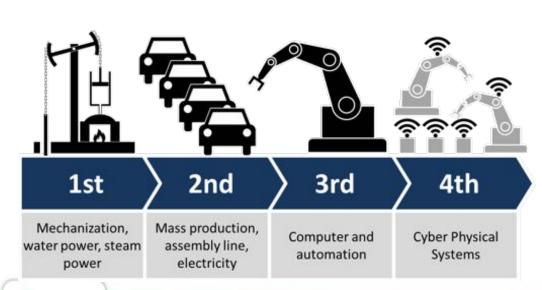
Source: Discutforum

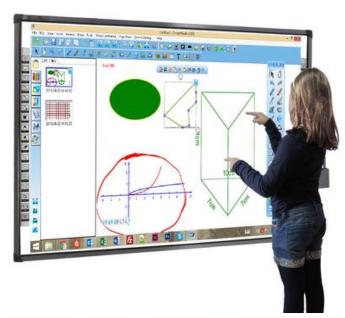
Source: Newsweek

With a lot of impacts and

metrics

Limited stocks of metals and rare earths 17 out of 60 metals are recycled


Two visions of the smart city


(for a computer scientist)

Smart city is wonderful (for a computer scientist)

- Optimization of everything: transport, mobility, energy-> Innovative scenario
- Sensing everything: pollution, noise -> full of data
- Industry 4.0 -> money!
- Happy citizens, happy companies. E-learning!
- More sensors, terminals, screens, datacenters



Smart city is awful (for a computer scientist)

- More usage/pression on (numerical) services, short term experiments, BigData for what?
- Energy consumption, heterogeneous technologies
- Too much sensors /domotic everywhere, that quickly fail...
- Cocktail of mobile networks > heath impact?
- Freedom of citizens

3 scenarii to support smart cities

More & More : digital growth and ultra-centralization

 More & same : Stabilization of the digital technical system and infrastructural diversity

Less & Less: digital ultra-decentralization: the end of data centers?

Scenario: More & More: digital growth and ultra-centralization

- More IOT, more services -> more cloud, more big datacenters
- Al everywhere ?
- IT4Green must work

Big Datacentres : ala Google ?

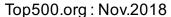
Google:

Few M servers?

15 datacentres?

All renewable energy

PUE (Power Usage Effectiveness): 1.12



Bigger than previous

- We can build what we want...
 - China Telecom-Inner Mongolia Information Park: 1.2
 millions of servers 3 Billion \$ 150 MW
 - Bitmain / Antpool: 60 MW? for Bitcoin production
 - Kolos Norway: 2018-2019 : 70 MW -> 1 GW (100% RE)

Rank	System	Cores	Rmax [TFlop/s]	Rpeak (TFlop/s)	Power [kW]
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Qak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LENL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26018 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
6	Trinity - Cray XC49, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray Inc. DOE/NNSA/LANL/SNL United States	979,072	20,158.7	41,461.2	7,578
7	Al Bridging Cloud Infrastructure [ABCI] - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Testa V100 SXM2, Infiniband EDR, Fujitsu National institute of Advanced Industrial Science and Technology [AIST]	391,680	19,880.0	32,576.6	1,649
8	SuperMUC-NG - ThinkSystem SD530, Xeon Platinum 8174 24C 3.16Hz, Intel Omni-Path , Lenovo Leibniz Rechenzentrum Germany	305,856	19,476.6	26,873.9	

Rank	TOP500 Rank	System	Cores	Rmax [TFlop/s]	Power (kW)	Power Efficiency (GFlops/watts)
1	375	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	953,280	1,063.3	60	17.604
2	374	DGX SaturnY Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698x 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla V100 , Nvidia NVIDIA Cerporation United States	22,440	1,070.0	97	15.113
3	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Dak Ridge National Laboratory United States	2,397,824	143,500.0	9,783	14.668
4	7	Al Bridging Cloud Infrastructure [ABCI] - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology [AIST] Japan	391,680	19,880.0	1,649	14.423
5	22	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2, HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704
6	2	Sierra - IBM Power System S922LC, IBM POWER9 22G 3.1GHz, NYIDIA Velta GV100, Dual-rait Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	7,438	12.723
7	446	AIST AI Cloud - NEC 4U-BGPU Server, Xeon ES-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Testa P100 SXM2 , NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
		- Company	G	reen	500	.org: No

Scenario 2: More & same : Stabilization of the digital technical system and infrastructural diversity: quest for a difficult resilience

- Less hyperscale datacenters
- More alternet
- New connected objects and scenarii of usage : from autonomous cars to security services -> need of low latency reaction (5G < 10 ms)
- Edge effect to support more services

Edge wave in data centers

Distributing DCs - impact of cooling / heat recycling – Hybrid systems (GPUs, FPGAs, Low Power processors)

Qarnot computing

Defab

Stimergy



Natclick@ Microsoft

Truck @ Delta Power Solutions -> Fog : for E2E computing

Scenario 3: less & less

- Energy has become very expensive, scarce
- Best effort Internet, intermittent connectivity, lowtech design
- Improving "locavoracity" of service
- DTN like scenario with little infrastructure
- For long distance services: follow the wind, follow the sun, renewable fist/only

 The GreenStar Network Map

GreenStar Network – World's First Zero Carbon Network & Cloud

Chiar (S)CO)

CARD

CARD

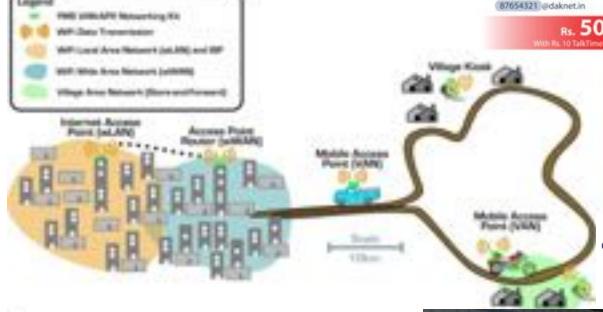
COLAD

COLAD

COLOD September 1 Color Color

Connecting without infrastructure: DTN

- UNITED VILLAGES Email Address 87654321 @daknet.in



DakNet*

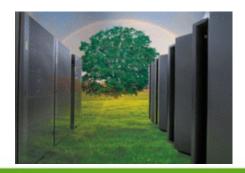
Identity Card

- Ex company making money and providing services with DTN: (First Mille Solution)
- Services:
 - Offline web search
 - **Emails**
 - Voicemails/ video mails/ SMS

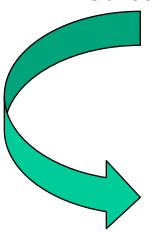
- UMASS/Amherst
- 40 buses
 - Bus to bus throughput: 2 Mbits

Need to reduce energy impact of large scale infrastructures -> Energy Efficiency can help

GreenIT challenge and role with target on usage


Managing energy leverages Reaching energy proportionality Eco-design

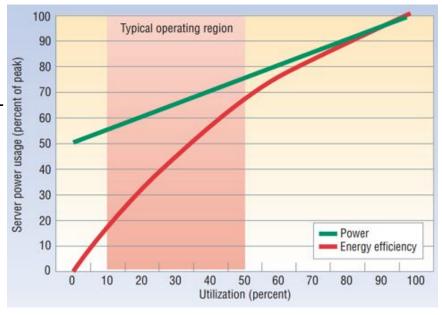
Managing multiple energy leverages


- Shutdown: to reduce the number of useless plugged resources
- **Slowdown**: to adapt performances (and energy consumption) to the real needs of applications, services and protocols
- Optimizing: to modify applications and services in order to make them greener
- Consolidating / aggregating : relocate services and applications on smaller number of physical resources

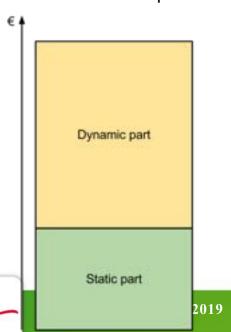
From green families to a lot of power capabilities

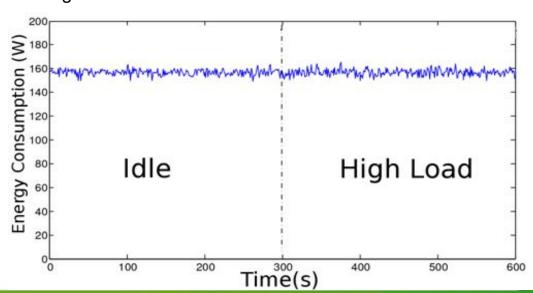
Green Families: Shutdown, Slowdown, Optimizing, Consolidating / aggregating:

- Node Shutdown
- Node Hibernation
- Node Suspend To Ram
- DVFS: Dynamic Voltage and Frequency Scaling
- NTV; near threshold voltage
- AVX : Advanced Vector Extensions
- Low Power Idle
- Adaptive Link Rate
- Green scheduling policies
- Energy budget aware scheduling
- Power Capping
- Green Programming
- Simple / Double precision computing...


Adressing this leverages coordination is a big research challenge

The grail of Energy proportionality


Luiz André Barroso and Urs Hölzle, « The case for Energy-Proportional Computing », IEEE Computer, 2007

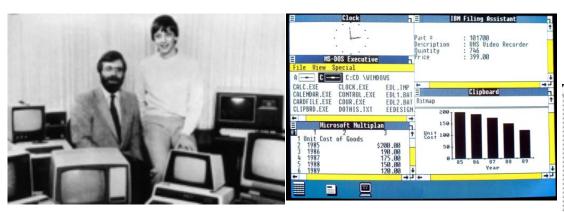

High idle consumption- Can be up to 50 % of peak power Average server load between 10 and 50 % - Most inefficient region

Servers: Important Idle consumption – weakly proportional

Networks: constant consumption independant of usage

Eco design of software and hardware

Be ready to go slowly

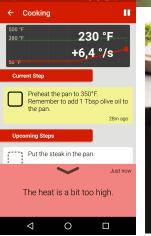


Formula1 : Speed: 260 km/h @ 400 km/h - 75 à 100 liters/100 km

2CV : Speed: 115 km/h <5 liters/100km

Be ready to go lowtech as old computers software design from Paul&Bill and Steve&Steve...

Windows 1 (85) et Mac OS 1 (84): need of 256 KB of memory



GreenIT is not sufficient, usage must change... Where do we put our personal cursor of acceptance ?

We are all frogs!

We must get out out of the pan (« Syndrome de Stockholm Numérique ») (Jean-Romain Lhomme)

We could become colibris!

We are all frogs!

We must get out out of the pan (« Syndrome de Stockholm Numérique ») (Jean-Romain Lhomme)

We have to become more than colibris!

What can we do?

- Cloud/Datacenters should remain for a few more years (with various forms: from fog to edge to pervasive to invisible to...)
- Future could be a mix of the 3 (or more) scenarii
- Avoiding waste / overprovisioning
- Keeping equipments as much as possible
- Taking care of rebound effects: improving one step of lifecycle could degrade other step and thus increase energy consumption of lifecycle
- Quantifying IT4Green
- What about compensating carbon : planting trees ? Not clear...
 - A french citizen: 12 t eq CO2 per year some tree can store 30 Kg of CO2 per year -> need to plant 400 trees and redo it/increase it again every 30-40 years?

Thanks to: F. Berthoud, E. Drezet, A-C. Orgerie, I. Rais

Laurent.lefevre@inria.fr